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M A N I P U L AT I O N

A review of learning-based dynamics models for 
robotic manipulation
Bo Ai1*, Stephen Tian2, Haochen Shi2, Yixuan Wang3, Tobias Pfaff4, Cheston Tan5,  
Henrik I. Christensen1, Hao Su1,6, Jiajun Wu2, Yunzhu Li3*

Dynamics models that predict the effects of physical interactions are essential for planning and control in robotic 
manipulation. Although models based on physical principles often generalize well, they typically require full-state 
information, which can be difficult or impossible to extract from perception data in complex, real-world scenarios. 
Learning-based dynamics models provide an alternative by deriving state transition functions purely from per-
ceived interaction data, enabling the capture of complex, hard-to-model factors and predictive uncertainty and ac-
celerating simulations that are often too slow for real-time control. Recent successes in this field have demonstrated 
notable advancements in robot capabilities, including long-horizon manipulation of deformable objects, granular 
materials, and complex multiobject interactions such as stowing and packing. A crucial aspect of these investiga-
tions is the choice of state representation, which determines the inductive biases in the learning system for reduced-
order modeling of scene dynamics. This article provides a timely and comprehensive review of current techniques 
and trade-offs in designing learned dynamics models, highlighting their role in advancing robot capabilities through 
integration with state estimation and control and identifying critical research gaps for future exploration.

INTRODUCTION
Humans have an intuitive grasp of physics that lets us interact with 
the environment and predict its evolution (1). By processing multi-
sensory information, we form mental models that help us anticipate 
how our actions affect the world (Fig. 1) (2). This intuitive under-
standing of physics does not depend on analytical methods. However, 
it applies across materials and objects, supporting diverse interactive 
skills that far exceed those of current robots.

Emulating this intuitive physics understanding in robots equates 
to deriving predictive models that anticipate action outcomes and 
support effective planning. Physics-based models (3, 4) generalize 
well but rely on full-state information, which is often unattainable in 
real-world manipulation tasks. Learning-based models offer an al-
ternative by learning predictive dynamics directly from raw sensory 
data, capturing hard-to-model factors (5, 6), reasoning about uncer-
tainty (6–8), and accelerating high-precision simulations too slow 
for real-time control (9, 10). Recent advances leverage deep neural 
networks as function approximators (8, 11).

Despite their promise, learning-based dynamics models face a 
fundamental challenge: designing inductive biases that ensure sam-
ple efficiency and generalization (12). This is particularly critical in 
robotics, where real-world data collection is costly and open-world 
environments have vast state spaces. Effective models require com-
pact state representations and structural priors to efficiently pro-
cess this information. However, this introduces trade-offs—although 
compact state spaces enhance generalization, they may reduce model 
expressiveness or complicate state estimation. Addressing these chal-
lenges requires careful consideration of task requirements, environ-
mental complexity, and sensory modalities.

This Review provides a comprehensive analysis of learning-based 
dynamics models, examining trade-offs in state representations and 
model architectures and their implications for robotic capabilities. We 
discuss perception requirements for state estimation and model archi-
tectures for learning state transitions and how different representa-
tions influence sample efficiency, generalization, and task suitability. 
Given increasing integration of learning-based dynamics models with 
planning for manipulation—spanning object repositioning (13–15), 
deformable object handling (16–19), multimodal perception (20, 21), 
and multiobject interaction (14, 22, 23)—a discussion on model de-
sign and implications for planning is crucial. Although prior reviews 
focused on related topics, such as deformable object manipulation 
(24, 25), physics-based simulation (26, 27), and intuitive physics (28), 
a dedicated review of learning-based dynamics models is lacking. This 
work fills that gap, providing insights for future research in robotic 
manipulation and beyond.

This Review focuses on the intersection of learning-based dy-
namics models and robotic manipulation. Thus, analytical dynamics 
models [such as (29)], differentiable (but not learned) models [such 
as (27)], and hybrid models [such as (5, 6)] are beyond its scope. 
Similarly, learning-based dynamics models without demonstrated 
applications to robotic manipulation are not covered comprehen-
sively. Within this scope, we begin by introducing learning-based 
dynamics models and contrasting them with analytical simulators. 
We then present a taxonomy of models based on state representa-
tions, discussing associated perception and dynamics learning tech-
niques. Subsequently, we explore how planning algorithms and policy 
learning can integrate these learned dynamics models to enable ro-
botic capabilities. We end with discussions on future directions and 
challenges in the field.

LEARNING-BASED DYNAMICS MODELS
Learning-based dynamics models predict how the world evolves in 
response to actions. This article focuses on models of environmental 
dynamics external to the robot.
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Background
We use the framework of partially observable Markov decision pro-
cesses (POMDPs) to formalize the process of perceiving and act-
ing. At time t, the agent is in state st ∈  , where  denotes the state 
space. The agent receives an observation ot ∈  from the environ-
ment and then takes an action at based on a policy π, where at = π(ot) 
and a ∈ . Conditioned on this action, the environment transitions 
to the next state st+1 = 

(

st , at
)

 , where   is the environment transi-
tion function. The process repeats until the task objective is achieved 
or the number of time steps reaches the task horizon H. The agent’s 
goal is to find a policy that minimizes the cost function c defined on 
the state st and action at over the time horizon, defined as

This formulation underlies both classical robotic control and 
model-based reinforcement learning (RL): In both paradigms, a 
transition model simulates future trajectories for planning or policy 
learning. The key question is how to represent and construct the 
policy function π. Learned model–based approaches approximate 
the transition model using a learned function ̂  before using it for 
control. We examine the core components of this framework below.
Perception module
The perception module g estimates the environment state st from past 
observations o0:t and actions a0:t–1, that is, st = g(o0:t, a0:t–1), which 
simplifies to st = g(ot, at–1) in fully observable settings. We view st as a 
unified representation of all task-relevant information inferred from 
raw sensory data, serving as input to downstream processes. A cen-
tral challenge lies in defining st to capture minimal yet sufficient in-
formation for manipulation. This Review surveys different choices of 
st and their trade-offs.

Dynamics module
The dynamics model ̂  predicts the state transition from st to st+1 given 
action at. Its design is closely coupled with the structure of st, often le-
veraging inductive biases to improve generalization and data efficiency. 
For instance, graph neural networks (GNNs) naturally suit particle-
based states because of their spatial equivariance. This Review exam-
ines model architectures for ̂  across different state representations.
Control module
The policy π generates control signals to minimize the cost (Eq. 1). It 
can be implemented via planning or policy learning and can output 
position-based (such as end-effector poses) or force-based control 
signals (such as joint torques). The policy’s design directly affects 
computational efficiency and control quality. This Review examines 
how control algorithms integrate with dynamics models toward solv-
ing concrete manipulation tasks. Figure 2 illustrates how dynamics 
models are learned from physical interaction data and integrated with 
control for downstream tasks.

Comparison with physics-based dynamics models
Traditionally, dynamics models are defined by analytical solvers that 
integrate governing equations of motion. In robotics, this includes 
rigid-body simulators (30, 31) and deformable object solvers such as the 
material point method (MPM) (4). Despite decades of progress, these 
models often diverge from real-world behavior—a challenge known as 
the simulation-to-reality (sim-to-real) gap (32). This gap arises because 
many physical effects, such as frictional contact or actuator drift, are 
difficult to model precisely or require parameters that are hard to mea-
sure (33). Even with accurate parameters, missing latent factors such 
as temperature can undermine accuracy. Moreover, real-world deploy-
ment depends on accurate state estimation and system identification, 
where small errors can accumulate over time (34).

Learned dynamics models offer an alternative by directly capturing 
physical processes from interaction data, mitigating the sim-to-real 
gap. They can compensate for state estimation errors (35) or bypass 

min
π

�
τ∼π

[

H
∑

t=0

c
(

st , at
)

]

(1)
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A
Fine-Grained

Geometry

B
Topological

Structure

C
Multiobject
Interactions

Fig. 1. Human-intuitive physics for manipulation tasks. Humans rely on intuitive physics to perform complex manipulation tasks. Depending on the task and environ-
ment, different levels of abstraction may be used in mental representations: (A) particles for fine-grained geometry, (B) keypoints for structural details, and (C) object-
centric representations for multiobject interactions. We illustrate mental predictions of manipulation actions based on these abstractions. In robotics, learning-based 
dynamics models aim to equip robots with similar predictive capabilities using structured state representations.
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state estimation entirely when trained on raw sensory inputs. Beyond 
bridging this gap, learned models are also end-to-end differentiable, 
enabling gradient-based planning, control, and online adaptation. 
Some studies found that learned models offer smoother gradients 
than analytical solvers (36) and can be more computationally effi-
cient, especially for nonrigid systems (37).

STATE REPRESENTATIONS
How should we represent the state of the world for learning-based 
dynamics models? A natural starting point is raw observations, such 
as pixels encoding RGB (red, green, blue), depth, or force fields. 
However, the state needs to capture only aspects of the environment 
relevant for accurate prediction and decision-making. This need 
motivates compact and structured representations.

One approach is to use latent representations, which compress 
raw observations into lower-dimensional encodings but often lack 
explicit three-dimensional (3D) structure. To incorporate geometry, 
the world can be discretized into particles, representing surfaces and 
volumes in three dimensions. For many tasks, particles may be over-
ly detailed, and keypoints offer a more abstract alternative by cap-
turing salient task-relevant features. However, these representations 
often treat scenes as unstructured collections of elements, whereas 
humans perceive and interact with discrete entities. Object-centric 
representations explicitly model objects and their interactions, add-
ing structure beyond lower-level elements.

These representations reflect varying levels of abstraction and 
modeling assumptions. More abstract representations enable reduced-
order modeling, improved sample efficiency, and generalization by fo-
cusing on task-relevant dynamics but often require stronger perception 

A Training dynamics model from random interaction data

B  Leveraging the learned dynamics model for downstream control
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Fig. 2. Robotic manipulation using learning-based dynamics models. (A) A dynamics model is trained on interaction data. The perception model extracts state repre-
sentations st from observations ot. Dynamics are learned in a self-supervised fashion. (B) The learned dynamics model is applied for downstream control, either by evalu-
ating action trajectories {ai
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 for planning or by generating interaction data {si
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 for policy learning.
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priors, such as object segmentation or keypoint detection. This section 
surveys perception methods and dynamics models for each repre-
sentation and discusses trade-offs and practical considerations.

2D pixel representations
Perhaps the most straightforward state representation is observed 
raw pixels, such as two-dimensional feature maps of RGB(D) (where 
D indicates depth) data. They are typically obtained directly from 
cameras and usually require only simple postprocessing such as downs-
ampling or cropping.
Dynamics learning
Learning dynamics models in pixel space can be framed as action-
conditioned video prediction. Given one or more context frames, o0:t 
and a sequence of actions a0:H, the model predicts future observa-
tions ot+1:H conditioned on the agent taking those actions. Although 
video prediction and generation are widely studied in computer vi-
sion and use similar techniques as pixel dynamics models, we focus 
on models that focus on physical prediction and action-conditioned 
models for planning.

An early line of work applying pixel-space models to planning with 
physical robots is visual foresight (38). This method trained a flow-
based action-conditioned video dynamics model on robotic physical 
interaction data and used it to plan object-pushing tasks. Extensions 
of this work demonstrated application to robotic tool use (39) and en-
abled quick adaptation to new objects via metalearning (40).

Suh and Tedrake (41) showed that a switched-linear pixel-based 
model can also yield strong performance. Transformer-based models 
have also been applied to robotic manipulation (42) and large-scale 
autonomous driving data (43). Last, recent video diffusion models 
learned visual dynamics with improved scalability (44–46). These 
nonautoregressive models can not only predict future frames but 
also inpaint intermediate ones. Du et al. (46) used this property 
combined with an inverse dynamics model to perform control.

Pixel-prediction methods can be readily applied to other data 
modalities as long as they can be represented as 3D arrays. These mo-
dalities include depth (47), percepts from an optical tactile sensor 
(21), and density fields of granular materials (48). Pixel-space models 
are typically trained with maximum likelihood objectives in a self-
supervised manner on video sequences, with prediction targets sam-
pled from future frames. Agent action labels for action-conditioned 
models may be represented as end-effector poses or joint positions. 
These can be obtained through proprioception. When action labels 
are absent, some models infer latent action representations (49–51).

Pixel dynamics models are usually evaluated with metrics from the 
video generation literature. However, these metrics focus on visual 
appearance and often do not correlate with planning performance 
(52). Physical prediction–based benchmarks (53) partially bridge this 
gap, but developing additional metrics is an open challenge.

The wide availability of pixels may allow pixel-space models to 
achieve broad generalization capabilities. Pixel-prediction models 
have been trained on increasingly diverse datasets, for instance, on 
robotic interactions across several robots and scenes (54). GAIA-1 
(43) was trained using in-the-wild driving data, and UniSim (45) is 
a single model trained with robotic data, human videos, internet 
media, and navigation data.

Overall, pixel-based representations do not require explicit state 
estimation and, in principle, can model arbitrary physical phenom-
ena. They bypass explicit perception pipelines but require large da-
tasets to learn effectively in high-dimensional observation spaces. 

Convolutional neural networks (CNNs) are commonly used, with 
recent approaches using transformers and diffusion models. Despite 
these advances, such models often struggle with object permanence 
and temporal consistency, even when trained with substantial compu-
tational resources (45, 46). For control, pixel-based models are sensitive 
to partial observability, which can lead to hallucinations, and their high 
computational cost poses challenges for high-frequency control.

Latent representations
Predicting dynamics from raw observations ot is challenging be-
cause of their high dimensionality and redundancy. A common 
alternative is to project ot into a lower-dimensional latent vector zt 
first. Although both pixel-based models and latent-state models can 
be trained on pixel data, they differ in their prediction domain: 
Pixel-based models autoregressively generate future observations, 
whereas latent-state models predict in the abstract latent space.

This projection introduces inductive biases by assuming that the 
state space admits a compact and smooth parameterization. This 
can substantially enhance learning efficiency and generalization by 
filtering out irrelevant variations.
Perception and representation learning
A key challenge in learning a latent representation is ensuring that 
the latent vector zt encodes task-relevant features rather than collaps-
ing to trivial solutions, such as mapping the set of all inputs to a con-
stant vector. Existing approaches address this challenge by imposing 
structure via supervision and can be categorized into reconstruction-
based and reconstruction-free methods.

Reconstruction-based training is a common approach for learn-
ing latent-state representations that ensures that encoded states retain 
sufficient information to reconstruct raw observations. Early work, 
such as Embed to Control (55), enforced alignment between decoded 
and ground-truth observations using Kullback-Leibler divergence 
but with the limiting assumption of linear state dependencies. More 
expressive models instead learn nonlinear mappings with deep net-
works, such as variational autoencoders (56) and GNNs (57). Latent 
states trained to reconstruct volumetric scenes further impose strong 
geometric and 3D priors (58, 59). However, these models are compu-
tationally expensive and impractical for real-time control.

In partially observable environments, reconstruction-based training 
extends to inferring occluded states. Action-conditional implicit dy-
namics (ACID) (60) encodes partial RGB-D inputs into a 3D feature 
field, predicting occupancy probabilities to handle occlusions for de-
formable object manipulation. When single-step observations are in-
sufficient, recurrent models can aggregate history information (7, 61).

Reconstruction-based training may lead to latents encoding task-
irrelevant details. To avoid this, reconstruction-free approaches use 
alternative learning signals. One alternative is to predict task-relevant 
features, such as object motion represented by optical flow (14). 
Inverse dynamics learning trains models to predict the action re-
sponsible for a state transition, ensuring only action-relevant latent 
features (15). Contrastive learning avoids trivial solutions, pulling 
predicted next states closer to ground truth states and pushing them 
away from incorrect encodings (19). When rewards are available, 
predicting rewards from latent representations provides compact, ef-
ficient, and task-relevant encodings (62, 63), at the cost of increased 
task dependence of the learned models.
Dynamics learning
Latent dynamics models can be categorized as probabilistic or de-
terministic. Probabilistic models predict distributions over future 
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states, whereas deterministic models estimate a single most likely 
outcome. In both cases, robot actions are typically incorporated by 
concatenating them with the estimated latent states as input to the 
dynamics predictor.

Probabilistic models leverage classical statistical methods or deep 
neural networks to predict distributions over future states. Linear 
probabilistic models, such as Gaussian state-space models, are typi-
cally trained by optimizing distributional divergence metrics (55, 64). 
More expressive approaches are based on deep neural networks and 
often incorporate history information. DayDreamer (7) and Deform-
Net (59) apply recurrent state-space models (RSSMs) (65), which use 
recurrence to maintain temporal memory and capture uncertainty, 
to real-world manipulation. Probabilistic models can output multi-
modal future predictions by combining mixture density networks 
with recurrent models (8).

When environmental dynamics are relatively predictable, deter-
ministic models provide a simpler alternative. They may use multi-
layer perceptrons (MLPs) for low-dimensional latent spaces (15, 57, 
58, 62, 63) and CNNs for high-resolution feature maps (14, 60).

In summary, latent-state models have been applied to diverse 
manipulation settings, including rigid bodies, articulated objects, 
and fluids. Training objectives range from task-agnostic formula-
tions, such as reconstruction, to highly task-specific losses incorpo-
rating reward signals. RSSMs and MLPs are commonly used for 
modeling dynamics in low-dimensional latent spaces, where well-
structured representations often lead to sample-efficient learning. 
Task-specific objectives may produce representations that struggle 
to generalize, whereas task-agnostic approaches can support cross-
task transfer, although generalization to varying object counts or 
scene configurations remains limited. Compact latent representa-
tions make these models computationally efficient, enabling fast 
closed-loop control.

3D particle representations
Unlike latent and pixel-based representations, particle-based mod-
els explicitly encode 3D structure by representing objects as discrete 
points, capturing both surfaces and volumes. This structure enables 
precise interaction modeling, and incorporating strong physical pri-
ors improves sample efficiency.

Particles have long been used in physics-based simulation meth-
ods, such as MPM (4). These techniques underpin modern physics-
based simulators (31, 66) but rely on approximate modeling, leading 
to a sim-to-real gap that often requires system identification (32). 
Learned particle dynamics models can predict particle behavior di-
rectly from real-world data.
Perception and representation learning
In real-world applications, particles are commonly sampled from ob-
served point clouds (16, 17, 22, 67). Single-camera methods can recon-
struct point clouds through gradient-based optimization (68), although 
these reconstructions are often noisy. Data are usually downsampled 
before training (16, 17). However, occlusion remains a challenge in 
cluttered environments. Some methods incorporate geometric priors 
to handle occlusion, for example, assuming dough conforms to the 
shape of a tool interacting with it (16). Integrating tactile sensing may 
also improve particle state estimation in combination with historical 
observations and recurrent structures (20).

Alternatively, volumetric representations can be constructed from 
multiview images via neural radiance fields (NeRFs) (69). Then, parti-
cles can be sampled from voxel grids using trilinear interpolation (4).

Dynamics learning
Particle dynamics arise from local particle interactions, which mod-
els typically capture using inductive biases such as spatial equivari-
ance and locality. To this end, existing approaches primarily use 
graph-based architectures or convolutional models.

GNNs are widely used for modeling particle interactions. Particles 
are represented as graph nodes, and node features may include physi-
cal parameters or motion and displacement information. Hierarchi-
cal relation networks (HRNs) (70) introduce a hierarchical graph 
structure where leaf particles encode local interactions, whereas root 
nodes provide object-level abstractions to handle rigid and nonrigid 
transformations. To enhance adaptability, dynamic particle interac-
tion networks (DPI-Nets) (57, 71) update dynamic interaction graphs 
during simulation, effectively capturing object deformations. This 
flexibility enabled DPI-Nets to lay the foundation for modeling elas-
toplastic objects (17, 72), granular material manipulation (22), food 
preparation (16), and object packing (20, 73). Graph network–based 
simulators (GNS) (74, 75) generalize this framework by providing 
a simpler yet more accurate model for fluids, rigid bodies, and de-
formable materials.

Alternatively, convolutional architectures model local interactions 
without explicit graphs. Smooth particle networks (SPNets) (76) use 
specialized convolutions: ConvSP for particle-particle interactions 
and ConvSDF for differentiable collisions with static geometry. Ac-
tions are supplied by updating the poses of controllable objects, which 
then interact with other objects. Compared with graph-based mod-
els, convolutional architectures are often more efficient and paralleliz-
able but less flexible for long-range or irregular interactions.

To summarize, particle-based representations explicitly encode 
geometric structure, with physical properties preserved through par-
ticle interactions. They are particularly well suited to deformable ob-
jects but have also been applied to rigid bodies and fluids. Estimating 
particle states from depth observations is sensitive to occlusions, and 
point tracking is often used to establish correspondences across frames. 
Graph-based networks and convolutional architectures are common 
modeling choices, offering strong inductive biases and sample efficien-
cy. These inductive biases support generalization to unseen object ge-
ometries, reflecting a trade-off: More demanding perception enables 
more accurate and efficient dynamics modeling through structured 
representations. For control, GNNs may face scalability challenges 
with dense graphs, whereas convolutional networks are generally light-
weight. Particle representations also integrate multimodal inputs, such 
as vision and touch, to enable fine-grained control.

Keypoint representations
Keypoint representations consist of sparse points that may encode 
implicit or explicit semantic information. Unlike particle representa-
tions, which use dense 3D points to capture object geometries, key-
points offer a more compact state representation that retains only 
task-relevant points. Typically, keypoints are defined by a set of 2D or 
3D coordinates; for instance, a rigid box can be represented by its 
eight corner points. Unlike unordered particle sets, keypoints are of-
ten structured as ordered lists with semantic information, such as 
visual features, implicitly assigned to specific indices.
Perception and representation learning
The literature presents three common approaches for keypoint extrac-
tion: supervised learning with manual labels, unsupervised learning 
using reconstruction losses, and zero-shot prediction using pre-
trained vision models. Supervised learning methods train networks 
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to predict keypoints from labeled datasets, but efficient keypoint an-
notation remains a challenge. Keypoint affordances for category-
level robotic manipulation (kPAM) (77) addresses this by labeling 
keypoints in three dimensions and projecting them into image space. 
Dense object nets (78) introduce dense visual descriptors, tracking 
keypoints over time via feature similarity. This approach has been 
extended for keypoint-based object tracking (13) and deformable 
object tracking (79).

Unsupervised learning methods extract keypoints using encoder-
decoder frameworks where the decoder reconstructs observations 
from keypoints. Transporter (80) is a representative 2D method, 
extracting keypoints from RGB images through feature inpainting 
and reconstruction. In 3D, KeypointDeformer (81) predicts shape-
representative keypoints from object meshes, training on source-
target mesh pairs to learn deformation consistency.

Recent work explores zero-shot keypoint detection using visual 
foundation models. RoboABC (82) aligns robot observations with 
human-object interaction data using contrastive language-image 
pretraining (CLIP) and diffusion features (83, 84) to identify contact 
points. Back to 3D (B2-3D) (85) projects 2D DINO features into 3D 
space to detect category-specific keypoints with minimal annota-
tions. The “keypoints + instructions to execute” (KITE) (86) method 
extends this by training a grounding module to localize semantic 
keypoints on the basis of text inputs.
Dynamics learning
Keypoints can be processed similarly to particles using GNNs be-
cause they also represent points in space (87–90). However, when 
organized as ordered lists, keypoints can encode additional seman-
tic information. Thus, although GNNs are permutation invariant 
and well suited for unordered data, ordered keypoints are typically 
processed with MLPs, which can leverage ordering information 
(13, 91). In both cases, actions are represented as fixed-dimensional 
vectors and concatenated with graph node features or keypoint fea-
ture vectors for dynamics prediction (13, 88, 89).

Keypoint-based representations focus on task-relevant features 
rather than full scene geometry, making them suitable for tasks 
where specific object regions are salient for control. They have been 
applied to both rigid-body and deformable object manipulation. 
Keypoints are typically extracted using learned detectors. Although 
more compact than particle sets, they are sensitive to occlusion and 
require consistent detection over time. Lightweight architectures, 
such as MLPs or graph-based models, are commonly used to cap-
ture keypoint dynamics and interactions. Because keypoints corre-
spond to consistent abstract task-relevant structures, models can 
often generalize across object instances. Their compactness also en-
ables fast inference, real-time planning, and feedback control.

Object-centric representations
A core challenge of scaling dynamics models to diverse scenes is the 
combinatorial complexity of possible object configurations in the 
world, which is challenging to handle without compositional gener-
alization abilities. Humans address this by perceiving scenes in an 
object-centric way: containing discrete entities with boundaries and 
predictable interactions (92).

Motivated by this, some approaches adopt object-centric represen-
tations that model dynamics at the level of interacting objects rather 
than low-level particles or features. These structured representations 
support generalization to novel object arrangements and are the high-
est abstraction level that we consider for modeling dynamics.

Perception and representation learning
Techniques for obtaining object-level latent representations from 
raw observations include segmenting objects from visual inputs and 
encoding their features, directly mapping multiobject scenes to 
structured object-centric encodings, or leveraging inverse rendering 
techniques to infer physical object states. The first approach explic-
itly segments objects before extracting features. Object-oriented 
prediction and planning (O2P2) (93) assumes access to instance 
segmentation and encodes each object separately, enforcing mean-
ingful representations through a neural rendering engine. Neuro-
symbolic dynamic reasoning (NS-DR) (94) extends this technique 
to video, whereas region proposal interaction networks (RPINs) (95) 
jointly detect and encode objects for dynamics learning. Composi-
tional NeRF (23) integrates segmentations across camera viewpoints 
for 3D consistency.

Alternatively, object-centric representations can be learned from 
multiobject scenes without explicit segmentation. Visual interaction 
networks (VINs) (96) extract object-wise latent representations from 
image sequences and decode them into object states, including posi-
tion and velocity, but require ground-truth supervision. To alleviate 
this, the object-centric perception, prediction, and planning (OP3) 
framework (97) performs unsupervised object discovery, iteratively 
refining posterior estimates of object assignments on the basis of 
interaction data.

A third approach leverages inverse rendering to infer object 
states from raw observations. Tian et al. (98) used neural implicit 
object representations and optimization-based inference to estimate 
6D object poses, achieving robust performance under varying light-
ing conditions.
Dynamics learning
Object-centric dynamics models treat objects as discrete entities 
and model their interactions. They can be implemented using ge-
neric neural networks or graph-based architectures that explicitly 
leverage relational structures.

To explicitly leverage relational structure, the neural physics en-
gine (NPE) (99) introduces a mechanism akin to message passing in 
GNNs. It iterates over object pairs, predicting their relative motion 
and aggregating predictions. O2P2 (93) and OP3 (97) adopt similar 
object-centric architectures. Although O2P2 incorporates environ-
ment actions such as object placement or motion, OP3 further em-
beds action information as a latent vector to modulate both per-object 
dynamics and interactions.

GNNs provide a more structured approach to modeling object 
interactions through iterative message passing. The foundational in-
teraction networks (INs) (100) represent objects as graph nodes and 
encode relational attributes, such as restitution coefficients and 
spring constants, in the edges. However, the model assumes access 
to ground-truth physical properties, such as shape and mass. When 
object states are unavailable, latent representations or robot actions 
can act as node features (23, 94).

To sum, object-centric representations are well suited for tasks 
involving multiobject interactions but less effective for modeling 
continuous materials, such as fluids or highly deformable objects. 
Perception is typically achieved through instance segmentation, in-
verse rendering, or object proposal techniques, although it remains 
challenging in general. Dynamics are often modeled using graph-
based architectures, enabling relational reasoning and modularity. 
With object-level priors, these models support combinatorial gener-
alization across varying numbers and configurations of objects. 
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They are generally computationally efficient for control, but percep-
tion can become a bottleneck, potentially introducing latency.

Comparing and selecting state representations
Each state representation provides distinct trade-offs in modeling ca-
pacity, sample efficiency, generalization, task alignment, interpretabil-
ity, and computational cost (Fig. 3). Less-structured representations, 
such as latent states and pixels, simplify state estimation but introduce 
challenges in model bias and generalization. They often require larger 
datasets and can hallucinate predictions in out-of-distribution sce-
narios. These inaccuracies can be problematic during downstream 
control because optimization over unreliable model outputs may de-
grade control performance.

Conversely, structured representations, such as particles and 
object-centric models, provide strong inductive biases, such as spa-
tial equivariance, enhancing generalization and prediction accuracy. 
These models are often trainable within a few graphics processing 
unit (GPU) hours (17, 71) and more robust for policy and trajec-
tory optimization. However, they pose challenges for state estima-
tion. Particle-based methods require temporally consistent 3D point 
tracks, which remain difficult to obtain (90). Similarly, object-centric 
representations depend on accurate perception modules, often mak-
ing state estimation a bottleneck for scaling structured models.

The optimal choice of state representation depends on both the 
downstream task and hardware constraints. For instance, object-centric 
representations excel in manipulation tasks involving multiple rigid 
bodies (94, 96, 101), such as object rearrangement (23), stacking (93), 
and sliding (14), because of their high level of abstraction but are un-
suited for fluids or granular materials, for which it is unclear how to 
define the notion of an object. Particle-based representations flexibly 
capture the dynamics of deformable and nonrigid objects (71, 74), in-
cluding dough (17), clothes (102), and soft toys (20), although they 
often require multiview RGB-D sensing for point cloud perception. La-
tent and pixel-based models (44–46) can, in principle, handle arbitrary 
entities. However, they may produce physically inconsistent predictions 
without physics priors and explicit 3D representations, particularly in 
contact-rich scenarios such as cutting or splitting objects. In addition, 
highly specular, transparent, or otherwise visually complex materials 
can be challenging for RGB image reconstruction.

Interpretability is another key consideration. For some state rep-
resentations, such as pixels, particles, and keypoints, visualizing 

predicted trajectories is natural, making it simple to diagnose failure 
cases and refine models. In contrast, reconstruction-free latent-state 
models often lack this transparency.

Last, computational cost is crucial for real-world robotic de-
ployment. Pixel-based models require high-capacity architectures, 
whereas keypoint-based models often operate with smaller networks. 
Graph-based methods, often used with particle representations, can 
scale linearly with the number of graph edges or quadratically with the 
particle count, making inference costly. In addition, backpropagation 
through models during gradient-based action optimization can add 
substantial computational overhead.

Table  1 summarizes the key trade-offs across state representa-
tions, including sensing modalities, computational requirements, 
and target applications. Although existing methods excel at handling 
specific object types and sensor inputs, a unifying representation that 
generalizes across diverse robotic tasks remains a challenging but 
crucial direction for future work.

CONNECTION TO ROBOTIC CONTROL
Learning-based dynamics models can be integrated with control 
modules to generate robot motions for predefined task objectives. We 
first detail two ways to leverage learned dynamics models and then 
discuss representative tasks that benefit from this integration.

Control methods
Techniques for performing control using learning-based dynamics 
models fall into two main paradigms: motion planning and poli-
cy learning.
Motion planning
Motion planning searches for a feasible path from an initial state to a 
goal state while satisfying task constraints. Learned dynamics models 
enable planning in complex or unknown environments, where ana-
lytical models are unavailable, inaccurate, or hard to obtain. Motion 
planning methods can be broadly categorized into path planning and 
trajectory optimization.

Path planning focuses on finding a sequence of collision-free 
states without modeling system dynamics. Sampling-based methods 
such as rapidly exploring random trees (RRTs) (103) and probabilistic 
roadmaps (PRMs) (104) are widely used to search high-dimensional 
spaces with complex constraints. An RRT incrementally expands a 

Lower abstraction
Larger state space
Simpler state estimation
Expressive but data hungry
Weaker generalization

Higher abstraction
Compact state space

Complex state estimation
Sample-e�cient but constrained

Stronger generalization
Latent

Pixels Particles

Keypoints

Object-centric 

Fig. 3. A spectrum of state representations with varying structural priors. State representations in dynamics models range from unstructured (pixels and latent) to 
structured (particles, keypoints, and object-centric). Increasing structure introduces stronger priors and abstraction, enabling better generalization but requiring more 
complex state estimation. The “Swiss roll” illustration for latent states was inspired by Tenenbaum et al. (132) and created using Python.
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search tree through random sampling. The resulting paths can then 
be refined into dynamically feasible trajectories through trajectory 
optimization with learned dynamics models.

Trajectory optimization refines action sequences locally to im-
prove task performance, directly leveraging learned dynamics models 

to simulate and evaluate outcomes. Sampling-based methods such as 
the cross-entropy method (CEM) (105) and model-predictive path 
integral (MPPI) (106) explore multiple action candidates, whereas 
gradient-based methods adjust actions using cost gradients enabled 
by model differentiability. Moreover, learned dynamics models can 

Table 1.  Summary of key studies on dynamics learning. This table categorizes the literature on the basis of the type of state representation, sensors used, 
dynamics modeled, and object types considered. The dimensions of the dynamics (2D and 3D) refer to the space in which object rotations, translations, and 
deformations are modeled.

Sensing Dynamics Object type

References RGB Depth Multiview Tactile 2D 3D Rigid Deformable Fluids Multiobject

2D pixel representations

 Finn and 
Levine ( 11 )

✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ✓ ﻿ ✓

 Suh and 
Tedrake ( 41 )

✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿ ﻿

 Hoque et al. 
( 47 )

✓ ✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿

 Du et al. ( 46 ) ✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿ ✓
 Yang et al. 
( 45 )

✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿ ✓

Latent representations

 Agrawal et al. 
( 15 )

✓ ﻿ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ﻿

 Yan et al. ( 19 ) ✓ ﻿ ﻿ ﻿ ✓ ﻿ ﻿ ✓ ﻿ ﻿

Wu et al. ( 7 ) ✓ ﻿ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ﻿

 Li et al. ( 58 ) ✓ ﻿ ✓ ﻿ ﻿ ✓ ✓ ✓ ✓ ✓
 Shen et al. 
( 60 )

✓ ✓ ﻿ ﻿ ﻿ ✓ ✓ ✓ ﻿ ﻿

3D particle representations

 Gonzalez 
﻿et al. ( 74 )

﻿ ﻿ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ✓

 Li et al. ( 71 ) ﻿ ✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ✓ ✓
 Ai et al. ( 20 ) ✓ ✓ ✓ ✓ ﻿ ✓ ✓ ✓ ﻿ ✓
 Shi et al. ( 16 ) ✓ ✓ ✓ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿

Wang et al. 
( 22 )

✓ ✓ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿ ✓

Keypoint representations

 Manuelli 
﻿et al. ( 13 )

✓ ✓ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ﻿

Wang et al. 
( 91 )

✓ ﻿ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ✓

 Li et al. ( 87 ) ✓ ﻿ ﻿ ﻿ ✓ ﻿ ﻿ ✓ ﻿ ✓
 Ma et al. ( 88 ) ﻿ ✓ ﻿ ﻿ ✓ ﻿ ﻿ ✓ ﻿ ﻿

 Rezazadeh 
and Choi ( 89 )

✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿ ✓

Object-centric representations

Watters et al. 
( 96 )

✓ ﻿ ﻿ ﻿ ✓ ﻿ ✓ ﻿ ﻿ ✓

 Janner et al. 
( 93 )

✓ ﻿ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ✓

 Xu et al. ( 14 ) ✓ ✓ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ✓
 Yi et al. ( 94 ) ✓ ﻿ ﻿ ﻿ ﻿ ✓ ✓ ﻿ ﻿ ✓
 Driess et al. 
( 23 )

✓ ✓ ﻿ ﻿ ﻿ ✓ ✓ ✓ ﻿ ✓
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be integrated with online system identification to adapt to uncertain 
dynamics (14, 20, 107).
Policy learning
In contrast with motion planning, policy learning seeks to directly 
obtain a map from observations to actions. Learned dynamics mod-
els can provide simulated transitions as training data.

One approach is to generate training data in the form 
⟨

st , sg , at
⟩

 , 
where the state st and action at yield the next state sg. An inverse 
dynamics model can then learn to predict the action needed to tran-
sition from st to sg, acting as a goal-conditioned policy. However, 
errors may accumulate over extended rollouts, and multimodal ac-
tion distributions can be hard to fit, given that multiple actions could 
achieve the same transition.

Reinforcement learning (RL) optimizes policies through trial-
and-error interactions to maximize cumulative rewards. Learned 
dynamics models facilitate this process by simulating transitions 
(108), allowing policies to be trained with a reduced or negligible 
number of real-environment interactions. However, inaccuracies in 
the learned dynamics model can lead to policy exploitation, particu-
larly in state distributions not well supported by training data. This 
can be mitigated by fine-tuning the policy on real-world data in ad-
dition to simulated rollouts (109).

Representative robotic tasks
Learning-based dynamics models have been applied across tasks 
from object pushing to deformable and multiobject manipulation. 
This section highlights key applications and integrations with mo-
tion planning and policy learning techniques.
Object repositioning
Object repositioning is widely used to evaluate learned dynamics 
models in robotic control. Latent representations (15, 60) and pixels 
(21) have been used to represent single-object scenes, whereas key-
points can serve as a lower-dimensional representation for efficient 
dynamics learning given the limited degrees of freedom of rigid ob-
jects (13). On the other hand, multiobject scenarios can be better 
modeled with object-centric representations (23). For control, mo-
tion planning methods such as random search (14, 38, 60), MPPI 
(13, 106), and CEM (11, 105) can optimize action sequences. Online 
system identification can help handle objects with unknown physi-
cal properties (20). Alternatively, inverse dynamics models trained 
alongside forward models can directly infer actions from current 
and target states (15).
Deformable object manipulation
Deformable object manipulation presents challenges because of 
high-dimensional shape variations and complex contact dynamics 
(24, 25). Particle-based representations can capture the arbitrary ge-
ometries of deformable objects (16, 17, 20, 71, 74, 107, 110) and can 
be abstracted into keypoints for objects with salient features, such as 
clothes (88). Learned dynamics models have been integrated with 
trajectory optimization for manipulating rope (19, 23), cloth (59), 
dough (17, 111), and soft toys (20). These models also enable train-
ing goal-conditioned policies, as demonstrated in long-horizon tasks 
such as making dumplings (16).
Multiobject manipulation
Manipulation involving multiple objects requires efficient planning 
to manage large state spaces. Particle-based (20) and object-centric 
representations (23) perform well in multiobject modeling, whereas 
pixel-based methods struggle with modeling contact-rich interactions. 
To perform control using learned dynamics models, RoboPack (20) 

applies MPPI with action priors for object insertion. Latent-space 
RRT has been combined with model predictive control for long-term 
planning and real-time corrections (23).
Tool-use manipulation
Modeling tool-use dynamics may extend robotic capabilities beyond 
manipulating objects directly with an end effector. Particles can pro-
vide a unified representation for objects, tools, and robot end effec-
tors (16, 20, 22) but require detailed 3D sensing; pixel-based methods 
offer a lightweight perception alternative (39). Learned models have 
been used for shaping dough with rollers and punches (16), nonpre-
hensile box manipulation with compliant tools (20), and granular 
material manipulation (22). For extended tasks requiring tool selec-
tion and task execution, action proposal models improve planning 
efficiency for sampling-based planning (39). Figure 4 illustrates these 
tasks, and a summary of the discussed work is provided in Table 2.

FUTURE DIRECTIONS
Learning-based dynamics models have advanced adaptive control 
in robotics model-based planning and policy learning. However, 
current systems remain far from human-level generalization, adapt-
ability, and robustness in unstructured environments. This section 
discusses key limitations and outlines promising directions for fu-
ture research.

Opportunities in perception
Partially observable domains
Real-world environments are inherently partially observable because 
of visual occlusions and unknown physical properties, such as mate-
rial rigidity and friction. Although passive history (7, 57), active 
perception (14), and multimodal sensing (20) improve state estima-
tion, challenges remain in cluttered and unstructured scenes. Struc-
tured representations such as particles require precise perception 
capabilities, whereas less-structured models such as pixels avoid this 
requirement but often struggle with accuracy and generalization, 
especially for contact dynamics (45). Future work should explore 
new representations and robust state estimation methods to better 
handle partial observability.
Multimodal perception
Although most prior work relied on visual sensing, other modalities, 
including tactile (20) and audio sensing (112), provide complemen-
tary information for perception and control. However, integrating 
multimodal signals introduces several challenges. Differences in sta-
tistical distributions across modalities complicate model training, 
and mismatched sensing frequencies create deployment-time diffi-
culties. In addition, effectively fusing heterogeneous signals into a 
unified representation remains an open problem. Addressing these 
challenges will enable more robust dynamics reasoning and control 
performance across a wider range of tasks.

Opportunities in dynamics learning
Robust dynamics models
Inaccuracies in learned dynamics models can be exploited by planning 
and reinforcement learning agents, leading to failures in long-horizon 
tasks. Ensuring robust predictions across the entire state-action space 
is challenging because of its combinatorial size. In addition, certain 
state-action subspaces can be difficult or unsafe to explore, limiting 
counterfactual reasoning capabilities. Strategies to address this include 
using simulation data to cover challenging regions of the state-action 
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space, introducing physics priors to reduce data requirements (113), 
and using probabilistic models to account for aleatoric uncertain-
ty (7, 59).
Foundation dynamics models
Recent advances in foundation models (114) highlight the potential 
of large-scale training for broadly capable vision and language 

models. In contrast, most learned dynamics mod-
els remain narrow in domain because of the lack 
of large-scale real-world datasets with action labels 
(19, 102). Scaling up dynamics models may require 
inferring actions from unlabeled data such as inter-
net videos. Early efforts, such as learning latent 
actions (51, 115), suggest promising directions for 
this goal.
Dynamics priors from foundation models
Estimating physical properties, such as mass, friction, 
and deformability, is crucial for accurate dynamics 
modeling yet remains challenging. Prior work has at-
tempted to infer these properties from observations, 
using visual cues (98), tactile sensing (20), or multiv-
iew depth images (14). Recent foundation models 
demonstrate common-sense reasoning about mate-
rial properties (116, 117), offering a potential source 
of priors for estimating system parameters (107). By 
integrating these priors with learned dynamics mod-
els, future work could reduce reliance on real-world 
data and online identification.
Emerging representations from 
graphics research
Scene representations from computer graphics offer 
new possibilities for dynamics learning. NeRF-based 
representations address limitations of direct pixel 
representations by capturing multiview consistency 
and 3D structure (23, 58). Particle-based models 
tend to struggle with smooth continuous deforma-
tions, but recent advances in 3D Gaussian splatting 
(3DGS) (118) may help address this by modeling 
particles as Gaussian functions, producing smooth-
er and more flexible surfaces. Although 3DGS has 
been applied to dynamic scene reconstruction (119, 
120), its integration with action-conditioned dy-
namics models remains underexplored. Early efforts 
include tracking objects with 3DGS in particle-based 
models (121), but deeper integration is a promising 
future direction.
Large-scale scene representations
Most learning-based dynamics models focus on small-
scale tabletop environments and local interactions 
(10, 88, 111), limiting their applicability to real-world 
tasks that require reasoning over large, dynamic spac-
es. Traditional approaches, such as simultaneous lo-
calization and mapping (SLAM) (122), provide global 
geometric maps but lack dynamic information. Fu-
ture directions include developing scene representa-
tions at varying levels of abstractions that capture 
both global structure and local interactions, training 
dynamics models from local interactions while main-
taining scene-level coherence, and designing efficient 
update mechanisms that modify only affected scene 
regions (123).

Opportunities in robotic control
Hierarchical dynamics modeling and planning
Highly detailed dynamics models are not always ideal for planning, 
given that they induce large search spaces and high computational 
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Fig. 4. Robotic manipulation tasks enabled by learning-based dynamics models. (A) Object reposi-
tioning, (B) rope manipulation, (C) cloth manipulation, (D) plasticine manipulation, (E) multiobject ma-
nipulation, and (F) tool-use manipulation. Examples span rigid and deformable objects, multiobject 
settings, and tool-assisted operations.
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cost. Instead, modeling environments at multiple levels of abstrac-
tion can enable more efficient hierarchical planning (124) for long-
horizon tasks. Low-level models can capture fine-grained physical 
interactions for motor control, whereas high-level models may rep-
resent skill-level transitions or abstract state dynamics to support 
task planning (125). The most effective models are often those that 
are sufficient for the decision at hand (effective) while remaining 
minimal in complexity (efficient). Future work may explore con-
structing such dynamics models across different abstraction levels: 
spatially, from particle-based to object-centric representations, and 
temporally, from short-horizon physical transitions to extended 
skill executions. An exciting direction is to investigate how to learn 
unified hierarchical dynamics models, or to compose and interface 
separate models at different abstraction levels, and integrate them 
with hierarchical planning frameworks to support decision-making 
across large spatial and temporal scales.

Learning to plan
Existing work typically obtains locally accurate dynamics models and 
restricts exploration to well-supported regions through engineered 
action spaces or carefully designed planning costs. Machine learning 
offers a way to automate this process. One line of work focuses on 
improving planning efficiency by learning heuristics to guide search 
(126) or optimizing surrogate objectives such as action space selec-
tion (127). Another approach is to alleviate the need for globally 
accurate dynamics models by learning action generative models that 
constrain the sampling space during planning (128). Despite these 
initial explorations, learning to identify reliable regions of learned dy-
namics models and to plan efficiently and robustly in the presence of 
model imperfections remains an open challenge.
Performance guarantees
Prediction errors in learned dynamics models can accumulate over 
time and degrade planning performance. Uncertainty quantification 

Table 2. Summary of robotic tasks achieved by integrating learning-based dynamics models with planning. The table presents the designs, including 
representation, dynamics model class, and control methods, used for various robotic tasks. Each row represents a specific task and highlights the combination of 
approaches used to tackle it.

References Representation Dynamics model class Control

Object repositioning

 Agrawal et al. ( 15 ) Latent CNN Greedy planner

 Shen et al. ( 60 ) Latent MLP Random search

Tian et al. ( 21 ) Pixel CNN CEM

 Manuelli et al. ( 13 ) Keypoint GNN MPPI

 Driess et al. ( 23 ) Object-centric GNN RRT, random search

Rope manipulation

 Yan et al. ( 19 ) Latent CNN Random search

 Zhang et al. ( 107 ) Particle GNN MPPI

 Ma et al. ( 88 ) Keypoint GNN Random search

 Liu et al. ( 10 ) Keypoint MLP Mixed-integer programming

 Driess et al. ( 23 ) Object-centric GNN RRT, random search

Cloth manipulation

 Yan et al. ( 19 ) Latent CNN Random search

 Hoque et al. ( 47 ) Pixel CNN CMA-ES

 Lin et al. ( 110 ) Particle GNN Random search

 Ma et al. ( 88 ) Keypoint GNN Random search

Plasticine manipulation

 Shi et al. ( 17 ) Particle GNN Gradient descent

 Shi et al. ( 16 ) Particle GNN Learned policy

Bauer et al. ( 111 ) Latent Transformer CEM

Multiobject manipulation

 Xie et al. ( 39 ) Pixel CNN, LSTM CEM

 Xue et al. ( 48 ) Pixel CNN Gradient descent

 Ai et al. ( 20 ) Particle GNN MPPI

 Rezazadeh and Choi ( 89 ) Keypoint MLP GraphMPC

 Driess et al. ( 23 ) Object-centric GNN RRT, random search

Tool-use manipulation

 Xie et al. ( 39 ) Pixel CNN, LSTM CEM

 Shi et al. ( 16 ) Particle GNN Learned policy

Wang et al. ( 22 ) Particle GNN Gradient descent

 Ai et al. ( 20 ) Particle GNN MPPI
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methods, such as Bayesian neural networks (129) and variational 
inference (130), help mitigate this problem by additionally providing 
confidence estimates. Although uncertainty estimates have been used 
in model-based RL (109) and trajectory optimization (131), their 
use in robust planning remains underexplored. Coupling these tech-
niques with theoretical guarantees from planners is a promising path 
toward reliable real-world deployment.

CONCLUSIONS
Learning-based dynamics models have substantially advanced ro-
botic capabilities, from simple tasks to more complex scenarios in-
volving long-horizon planning and deformable objects. The choice 
of state representation critically influences a dynamics model’s ac-
curacy, data efficiency, and state estimation requirements. This Review 
has presented a robotics-centric examination of dynamics models, 
emphasizing their integration with perception and control. Despite 
recent advances, key challenges remain in developing robust, gener-
alizable, and scalable dynamics models that can serve as founda-
tional tools for robotic manipulation. Fundamental questions persist: 
What representations best capture diverse scenes? How can induc-
tive biases balance expressiveness and generalization? Addressing these 
questions is essential for advancing adaptive, interpretable, and ro-
bust robotic systems.
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