
A Review of Learning-Based Dynamics Models for
Robotic Manipulation

Bo Ai1∗, Stephen Tian2, Haochen Shi2, Yixuan Wang3, Tobias Pfaff4,
Cheston Tan5, Henrik I. Christensen1, Hao Su1,6, Jiajun Wu2, Yunzhu Li3∗

1University of California San Diego, USA
2Stanford University, USA
3Columbia University, USA

4Google DeepMind, UK
5Agency for Science, Technology and Research, Singapore

6Hillbot, USA

∗Corresponding authors: Bo Ai ⟨bai@ucsd.edu⟩ and Yunzhu Li ⟨yunzhu.li@columbia.edu⟩.

Dynamics models that predict the effects of physical interactions are essential

for planning and control in robotic manipulation. Although models based on

physical principles often generalize well, they typically require full-state infor-

mation, which can be difficult or impossible to extract from perception data

in complex, real-world scenarios. Learning-based dynamics models provide

an alternative by deriving state transition functions purely from perceived in-

teraction data, enabling the capture of complex, hard-to-model factors, pre-

dictive uncertainty, and accelerating simulations that are often too slow for

real-time control. Recent successes in this field have demonstrated notable ad-
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vancements in robot capabilities, including long-horizon manipulation of de-

formable objects, granular materials, and complex multi-object interactions

like stowing and packing. A crucial aspect of these investigations is the choice

of state representation, which determines the inductive biases in the learning

system for reduced-order modeling of scene dynamics. This review provides a

timely and comprehensive review of current techniques and trade-offs in de-

signing learned dynamics models, highlighting their role in advancing robot

capabilities through integration with state estimation and control, and identi-

fying critical research gaps for future exploration.

Summary: Dynamics models learned from real-world interactions with task-

aligned representations empower robotic manipulation.

INTRODUCTION

Humans possess an intuitive grasp of physics that lets us interact with the environment and

predict its evolution (1). By processing multisensory information, we form mental models that

help us anticipate how our actions affect the world (2) (Figure 1). This intuitive understanding

of physics does not depend on analytical methods. Yet, it applies across materials and objects,

supporting diverse interactive skills that far exceed those of current robots.

Emulating this intuitive physics understanding in robots equates to deriving predictive mod-

els that anticipate action outcomes and support effective planning. Physics-based models (3, 4)

generalize well but rely on full-state information, which is often unattainable in real-world ma-

nipulation tasks. Learning-based models offer an alternative by learning predictive dynamics

directly from raw sensory data, capturing hard-to-model factors (5, 6), reasoning about uncer-

tainty (6–8), and accelerating high-precision simulations too slow for real-time control (9, 10).
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Figure 1: Human intuitive physics for manipulation tasks. Humans rely on intuitive physics
to perform complex manipulation tasks. Depending on the task and environment, different lev-
els of abstraction may be used in mental representations: (A) particles for fine-grained geome-
try, (B) keypoints for structural details, and (C) object-centric representations for multi-object
interactions. We illustrate mental predictions of manipulation actions based on these abstrac-
tions. In robotics, learning-based dynamics models aim to equip robots with similar predictive
capabilities using structured state representations.

Recent advances leverage deep neural networks as function approximators (8, 11).

Despite their promise, learning-based dynamics models face a fundamental challenge: de-

signing inductive biases that ensure sample efficiency and generalization (12). This is particu-

larly critical in robotics, where real-world data collection is costly and open-world environments

have vast state spaces. Effective models require compact state representations and structured

priors to efficiently process this information. However, this introduces trade-offs—although

compact state spaces enhance generalization, they may reduce model expressiveness or com-

plicate state estimation. Addressing these challenges requires careful consideration of task re-

quirements, environmental complexity, and sensory modalities.

This review provides a comprehensive analysis of learning-based dynamics models, exam-

ining trade-offs in state representations and model architectures, as well as their implications

for robotic capabilities. We discuss perception requirements for state estimation, model ar-
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chitectures for learning state transitions, and how different representations influence sample

efficiency, generalization, and task suitability. Given increasing integration of learning-based

dynamics models with planning for manipulation—spanning object repositioning (13–15), de-

formable object handling (16–19), multi-modal perception (20, 21), and multi-object interac-

tion (14, 22, 23)—a discussion on model design and implications for planning is crucial. Al-

though prior reviews focused on related topics such as deformable object manipulation (24,25),

physics-based simulation (26, 27), and intuitive physics (28), a dedicated review of learning-

based dynamics models is lacking. This work fills that gap, providing insights for future re-

search in robotic manipulation and beyond.

This review focuses on the intersection of learning-based dynamics models and robotic ma-

nipulation. Thus, analytical dynamics models (such as (29)), differentiable (but not learned)

models (such as (27)), and hybrid models (such as (5, 6)) are beyond its scope. Similarly,

learning-based dynamics models without demonstrated applications to robotic manipulation are

not covered comprehensively. Within this scope, we begin by introducing learning-based dy-

namics models and contrasting them with analytical simulators. We then present a taxonomy of

models based on state representations, discussing associated perception and dynamics learning

techniques. Subsequently, we explore how planning algorithms and policy learning can inte-

grate these learned dynamics models to enable robotic capabilities. We end with discussions on

future directions and challenges in the field.

LEARNING-BASED DYNAMICS MODELS

Learning-based dynamics models predict how the world evolves in response to actions. This

article focuses on models of environment dynamics external to the robot.

4



Background

We use the framework of partially observable Markov decision processes (POMDPs) to formal-

ize the process of perceiving and acting.

At time t, the agent is in state st ∈ S, where S denotes the state space. It receives an

observation ot ∈ O from the environment, and then takes an action at based on a policy π,

where at = π(ot) and a ∈ A. Conditioned on this action, the environment transits to the next

state st+1 = T (st, at), where T is the environment transition function. The process repeats

until the task objective is achieved or the number of time steps reaches the task horizon H . The

agent’s goal is to find a policy that minimizes the cost function c defined on the state st and

action at over the time horizon, defined as

min
π

Eτ∼π

[
H∑
t=0

c(st, at)

]
. (1)

This formulation underlies both classical robotic control and model-based reinforcement

learning: in both paradigms, a transition model simulates future trajectories for planning or

policy learning. The key question is how to represent and construct the policy function π.

Learned-model based approaches approximate the transition model using a learned function T̂

before using it for control. We examine the core components of this framework below:

Perception Module

The perception module g estimates the environment state st from past observations o0:t and

actions a0:t−1, that is, st = g(o0:t, a0:t−1), which simplifies to st = g(ot, at−1) in fully observable

settings. We view st as a unified representation of all task-relevant information inferred from

raw sensory data, serving as input to downstream processes. A central challenge lies in defining

st to capture minimal yet sufficient information for manipulation. This review surveys different

choices of st and their trade-offs.
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Dynamics Module

The dynamics model T̂ predicts the state transition from st to st+1 given action at. Its de-

sign is closely coupled with the structure of st, often leveraging inductive biases to improve

generalization and data efficiency. For instance, graph neural networks (GNNs) naturally suit

particle-based states due to their spatial equivariance. This review examines model architectures

for T̂ across different state representations.

Control Module

The policy π generates control signals to minimize the cost (Equation 1). It can be implemented

via planning or policy learning, and can output position-based (such as end-effector poses) or

force-based control signals (such as joint torques). Its design directly affects computational

efficiency and control quality. This review examines how control algorithms integrate with

dynamics models towards solving concrete manipulation tasks.

Figure 2 illustrates how dynamics models are learned from physical interaction data and

integrated with control for downstream tasks.

Comparison with Physics-Based Dynamics Models

Traditionally, dynamics models are defined by analytical solvers that integrate governing equa-

tions of motion. In robotics, this includes rigid-body simulators (30, 31) and deformable object

solvers such as the material point method (MPM) (4). Despite decades of progress, these mod-

els often diverge from real-world behavior—a challenge known as the sim-to-real gap (32).

This gap arises because many physical effects—such as frictional contact or actuator drift—are

difficult to model precisely or require parameters that are hard to measure (33). Even with ac-

curate parameters, missing latent factors like temperature can undermine accuracy. Moreover,

real-world deployment depends on accurate state estimation and system identification, where
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Figure 2: Robotic manipulation using learning-based dynamics models. (A) A dynamics
model is trained on interaction data. The perception model extracts state representations st from
observations ot. Dynamics are learned in a self-supervised fashion. (B) The learned dynamics
model is applied for downstream control, either by evaluating action trajectories {ai0:H}Ni=0 for
planning or by generating interaction data {si0:H , ai0:H}Ni=0 for policy learning.
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small errors can accumulate over time (34).

Learned dynamics models offer an alternative by directly capturing physical processes from

interaction data, mitigating the sim-to-real gap. They can compensate for state estimation er-

rors (35) or bypass state estimation entirely when trained on raw sensory inputs. Beyond bridg-

ing this gap, learned models are also end-to-end differentiable, enabling gradient-based plan-

ning, control, and online adaptation. Some studies find that learned models offer smoother

gradients than analytical solvers (36), and can be more computationally efficient, especially for

non-rigid systems (37).

STATE REPRESENTATIONS

How should we represent the state of the world for learning-based dynamics models? A natural

starting point is raw observations, such as pixels encoding RGB, depth, or force fields. How-

ever, the state needs only capture aspects of the environment relevant for accurate prediction

and decision-making. This motivates compact and structured representations.

One approach is to use latent representations, which compress raw observations into

lower-dimensional encodings but often lack explicit 3D structure. To incorporate geometry, the

world can be discretized into particles, representing surfaces and volumes in 3D. For many

tasks, particles may be overly detailed, and keypoints offer a more abstract alternative by

capturing salient task-relevant features. Yet, these representations often treat the scene as un-

structured collections of elements, whereas humans perceive and interact with discrete entities.

Object-centric representations explicitly model objects and their interactions, adding structure

beyond lower-level elements.

These representations reflect varying levels of abstraction and modeling assumptions. More

abstract representations enable reduced-order modeling, improved sample efficiency, and gen-

eralization by focusing on task-relevant dynamics but often require stronger perception priors,
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such as object segmentation or keypoint detection. This section surveys perception methods and

dynamics models for each representation and discusses trade-offs and practical considerations.

2D Pixel Representations

Perhaps the most straightforward state representation is observed raw pixels, such as two-

dimensional feature maps of RGB(D) data. They are typically obtained directly from cameras

and usually require only simple post-processing such as downsampling or cropping.

Dynamics Learning

Learning dynamics models in pixel space can be framed as action-conditioned video prediction.

Given one or more context frames) o0:t and a sequence of actions a0:H , the model predicts future

observations ot+1:H conditioned on the agent taking those actions. Although video prediction

and generation are widely studied in computer vision and employ similar techniques as pixel

dynamics models, we focus on models that focus on physical prediction and action-conditioned

models for planning.

An early line of work applying pixel space models to planning with physical robots is visual

foresight (38). This method trained a flow-based action-conditioned video dynamics model on

robotic physical interaction data and used it to plan object-pushing tasks. Extensions of this

work demonstrated application to robotic tool use (39) and enabled quick adaptation to new

objects via meta-learning (40).

Suh and Tedrake (41) showed that a switched-linear pixel-based model can also yield strong

performance. Transformer-based models have also been applied to robotic manipulation (42)

and large-scale autonomous driving data (43). Finally, recent video diffusion models learn

visual dynamics with improved scalability (44–46). These non-autoregressive models can not

only predict future frames but also inpaint intermediate ones. Du et al. (46) use this property
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combined with an inverse dynamics model to perform control.

Pixel prediction methods can be readily applied to other data modalities as long as they

can be represented as three-dimensional arrays, including depth (47), percepts from an optical

tactile sensor (21), and density fields of granular materials (48).

Pixel-space models are typically trained with maximum likelihood objectives in a self-

supervised manner on video sequences, with prediction targets sampled from future frames.

Agent action labels for action-conditioned models may be represented as end-effector poses or

joint positions. These can be obtained through proprioception. When action labels are absent,

some models infer latent action representations (49–51).

Pixel dynamics models are usually evaluated with metrics from the video generation lit-

erature. However, these metrics focus on visual appearance and often do not correlate with

planning performance (52). Physical prediction-based benchmarks (53) partially bridge this

gap, but developing additional metrics is an open challenge.

The wide availability of pixels may allow pixel-space models to achieve broad generaliza-

tion capabilities. Pixel-prediction models have been trained on increasingly diverse datasets,

for instance on robotic interactions across several robots and scenes (54). GAIA-1 (43) was

trained using in-the-wild driving data, and UniSim (45) is a single model trained with robotic

data, human videos, internet media, and navigation data.

Overall, pixel-based representations do not require explicit state estimation and, in principle,

can model arbitrary physical phenomena. They bypass explicit perception pipelines but require

large datasets to learn effectively in high-dimensional observation spaces. Convolutional neu-

ral networks (CNNs) are commonly used, with recent approaches employing Transformers and

diffusion models. Despite these advances, such models often struggle with object permanence

and temporal consistency, even when trained with substantial computational resources (45,46).

For control, pixel-based models are sensitive to partial observability, which can lead to halluci-
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nations, and their high computational cost poses challenges for high-frequency control.

Latent Representations

Predicting dynamics from raw observations ot is challenging due to their high dimensionality

and redundancy. A common alternative is to project ot into a lower-dimensional latent vector

zt first. Although both pixel-based models and latent-state models can be trained on pixel

data, they differ in their prediction domain: pixel-based models autoregressively generate future

observations, whereas latent-state models predict in abstract latent space.

This projection introduces inductive biases by assuming the state space admits a compact

and smooth parameterization. This can substantially enhance learning efficiency and general-

ization by filtering out irrelevant variations.

Perception and Representation Learning

A key challenge in learning a latent representation is ensuring the latent vector zt encodes task-

relevant features rather than collapsing to trivial solutions, such as mapping the set of all inputs

to a constant vector. Existing approaches address this by imposing structure via supervision,

and can be categorized into reconstruction-based and reconstruction-free methods.

Reconstruction-based training is a common approach for learning latent state representa-

tions that ensures that encoded states retain sufficient information to reconstruct raw observa-

tions. Early work, such as Embed to Control (55), enforced alignment between decoded and

ground-truth observations using Kullback–Leibler divergence, but with the limiting assumption

of linear state dependencies. More expressive models instead learn non-linear mappings with

deep networks, such as variational autoencoders (56) and GNNs (57). Latent states trained to

reconstruct volumetric scenes further impose strong geometric and 3D priors (58,59). However,

they are computationally expensive and impractical for real-time control.
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In partially observable environments, reconstruction-based training extends to inferring oc-

cluded states. Action-conditional implicit dynamics (ACID) (60) encodes partial RGB-D inputs

into a 3D feature field, predicting occupancy probabilities to handle occlusions for deformable

object manipulation. When single-step observations are insufficient, recurrent models can ag-

gregate history information (7, 61).

Reconstruction-based training may lead to latents encoding task-irrelevant details. To avoid

this, reconstruction-free approaches use alternative learning signals. One alternative is to pre-

dict task-relevant features, such as object motion represented by optical flow (14). Inverse

dynamics learning trains models to predict the action responsible for a state transition, ensuring

only action-relevant latent features (15). Contrastive learning avoids trivial solutions, pulling

predicted next states closer to ground truth states and pushing them away from incorrect encod-

ings (19). When rewards are available, predicting rewards from latent representations provides

compact, efficient, and task-relevant encodings (62,63), at the cost of increased task dependence

of the learned models.

Dynamics Learning

Latent dynamics models can be categorized as probabilistic or deterministic. Probabilistic mod-

els predict distributions over future states, whereas deterministic models estimate a single most

likely outcome. In both cases, robot actions are typically incorporated by concatenating them

with the estimated latent states inputting to the dynamics predictor.

Probabilistic models leverage classical statistical methods or deep neural networks to predict

distributions over future states. Linear probabilistic models, such as Gaussian state-space mod-

els, are typically trained by optimizing distributional divergence metrics (55,64). More expres-

sive approaches are based on deep neural networks and often incorporate history information.

DayDreamer (7) and DeformNet (59) apply recurrent state-space models (RSSMs) (65), which
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use recurrence to maintain temporal memory and capture uncertainty, to real-world manipu-

lation. Probabilistic models can output multi-modal future predictions by combining mixture

density networks with recurrent models (8).

When environmental dynamics are relatively predictable, deterministic models provide a

simpler alternative. They may use multi-layer perceptrons (MLPs) for low-dimensional latent

spaces (15, 57, 58, 62, 63) and CNNs for high-resolution feature maps (14, 60).

In summary, latent-state models have been applied to diverse manipulation settings, includ-

ing rigid bodies, articulated objects, and fluids. Training objectives range from task-agnostic

formulations, such as reconstruction, to highly task-specific losses incorporating reward signals.

RSSMs and MLPs are commonly used for modeling dynamics in low-dimensional latent spaces,

where well-structured representations often lead to sample-efficient learning. Task-specific

objectives may produce representations that struggle to generalize, whereas task-agnostic ap-

proaches can support cross-task transfer, though generalization to varying object counts or scene

configurations remains limited. Compact latent representations make these models computa-

tionally efficient, enabling fast closed-loop control.

3D Particle Representations

Unlike latent and pixel-based representations, particle-based models explicitly encode 3D struc-

ture by representing objects as discrete points, capturing both surfaces and volumes. This struc-

ture enables precise interaction modeling, and incorporating strong physical priors improves

sample efficiency.

Particles have long been used in physics-based simulation methods, such as MPM (4). These

techniques underpin modern physics-based simulators (31,66), but rely on approximate model-

ing, leading to a sim-to-real gap that often requires system identification (32). Learned particle

dynamics models can predict particle behavior directly from real-world data.
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Perception and Representation Learning

In real-world applications, particles are commonly sampled from observed point clouds (16,17,

22, 67). Single-camera methods can reconstruct point clouds through gradient-based optimiza-

tion (68), though these are often noisy. Data is usually downsampled before training (16, 17).

However, occlusion remains a challenge in cluttered environments. Some methods incorpo-

rate geometric priors to handle occlusion, for example assuming dough conforms to the shape

of a tool interacting with it (16). Integrating tactile sensing may also improve particle state

estimation in combination with historical observations and recurrent structures (20).

Alternatively, volumetric representations can be constructed from multi-view images via

neural radiance fields (NeRFs) (69). Then, particles can be sampled from voxel grids using

trilinear interpolation (4).

Dynamics Learning

Particle dynamics arise from local particle interactions, which models typically capture using

inductive biases like spatial equivariance and locality. To this end, existing approaches primarily

use graph-based architectures or convolutional models.

GNNs are widely used for modeling particle interactions. Particles are represented as graph

nodes, and node features may include physical parameters or motion and displacement infor-

mation. Hierarchical relation networks (HRNs) (70) introduce a hierarchical graph structure

where leaf particles encode local interactions, whereas root nodes provide object-level abstrac-

tions to handle rigid and non-rigid transformations. To enhance adaptability, dynamic particle

interaction networks (DPI-Nets) (57, 71) update dynamic interaction graphs during simulation,

effectively capturing object deformations. This flexibility enabled DPI-Nets to lay the foun-

dation for modeling elasto-plastic objects (17, 72), granular material manipulation (22), food

preparation (16), and object packing (20, 73). Graph network-based simulators (GNS) (74, 75)
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generalize this framework by providing a simpler yet more accurate model for fluids, rigid bod-

ies, and deformable materials.

Alternatively, convolutional architectures model local interactions without explicit graphs.

Smooth particle networks (SPNets) (76) use specialized convolutions: ConvSP for particle-

particle interactions and ConvSDF for differentiable collisions with static geometry. Actions

are supplied by updating the poses of controllable objects, which then interact with other ob-

jects. Compared to graph-based models, convolutional architectures are often more efficient

and parallelizable, but less flexible for long-range or irregular interactions.

To summarize, particle-based representations explicitly encode geometric structure, with

physical properties preserved through particle interactions. They are particularly well-suited to

deformable objects but have also been applied to rigid bodies and fluids. Estimating particle

states from depth observations is sensitive to occlusions, and point tracking is often used to es-

tablish correspondences across frames. Graph-based networks and convolutional architectures

are common modeling choices, offering strong inductive biases and sample efficiency. These

inductive biases support generalization to unseen object geometries, reflecting a trade-off: more

demanding perception enables more accurate and efficient dynamics modeling through struc-

tured representations. For control, GNNs may face scalability challenges with dense graphs,

whereas convolutional networks are generally lightweight. Particle representations also inte-

grate multimodal inputs, such as vision and touch, to enable fine-grained control.

Keypoint Representations

Keypoint representations consist of sparse points that may encode implicit or explicit seman-

tic information. Unlike particle representations, which use dense 3D points to capture object

geometries, keypoints offer a more compact state representation that retains only task-relevant

points. Typically, keypoints are defined by a set of 2D or 3D coordinates; for instance, a rigid

15



box can be represented by its eight corner points.

Unlike unordered particle sets, keypoints are often structured as ordered lists with semantic

information, such as visual features, implicitly assigned to specific indices.

Perception and Representation Learning

The literature presents three common approaches for keypoint extraction: supervised learning

with manual labels, unsupervised learning using reconstruction losses, and zero-shot prediction

using pre-trained vision models.

Supervised learning methods train networks to predict keypoints from labeled datasets, but

efficient keypoint annotation remains a challenge. Keypoint affordances for category-level

robotic manipulation (kPAM) (77) addresses this by labeling keypoints in 3D and projecting

them into image space. Dense object nets (78) introduce dense visual descriptors, tracking key-

points over time via feature similarity. This approach has been extended for keypoint-based

object tracking (13) and deformable object tracking (79).

Unsupervised learning methods extract keypoints using encoder-decoder frameworks where

the decoder reconstructs observations from keypoints. Transporter (80) is a representative 2D

method, extracting keypoints from RGB images through feature inpainting and reconstruction.

In 3D, KeypointDeformer (81) predicts shape-representative keypoints from object meshes,

training on source-target mesh pairs to learn deformation consistency.

Recent work explores zero-shot keypoint detection using visual foundation models. RoboABC (82)

aligns robot observations with human-object interaction data using contrastive language-image

pretraining (CLIP) and diffusion features (83, 84) to identify contact points. Back to 3D (B2-

3D) (85) projects 2D DINO features into 3D space to detect category-specific keypoints with

minimal annotations. The “keypoints + instructions to execute” (KITE) (86) method extends

this by training a grounding module to localize semantic keypoints based on text inputs.
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Dynamics Learning

Keypoints can be processed similarly to particles using GNNs, since they also represent points

in space (87–90). However, when organized as ordered lists, keypoints can encode additional

semantic information. Thus, although GNNs are permutation-invariant and well-suited for un-

ordered data, ordered keypoints are typically processed with MLPs, which can leverage order-

ing information (13, 91). In both cases, actions are represented as fixed-dimensional vectors

and concatenated with graph node features or keypoint feature vectors for dynamics predic-

tion (13, 88, 89).

Keypoint-based representations focus on task-relevant features rather than full scene geom-

etry, making them suitable for tasks where specific object regions are salient for control. They

have been applied to both rigid-body and deformable object manipulation. Keypoints are typ-

ically extracted using learned detectors. Although more compact than particle sets, they are

sensitive to occlusion and require consistent detection over time. Lightweight architectures

such as MLPs or graph-based models are commonly used to capture keypoint dynamics and

interactions. Because keypoints correspond to consistent abstract task-relevant structures, mod-

els can often generalize across object instances. Their compactness also enables fast inference,

real-time planning, and feedback control.

Object-Centric Representations

A core challenge of scaling dynamics models to diverse scenes is the combinatorial complexity

of possible object configurations in the world, which is challenging to handle without compo-

sitional generalization abilities. Humans address this by perceiving scenes in an object-centric

way: containing discrete entities with boundaries and predictable interactions (92).

Motivated by this, some approaches adopt object-centric representations that model dynam-

ics at the level of interacting objects rather than low-level particles or features. These structured

17



representations support generalization to novel object arrangements, and are the highest abstrac-

tion level we consider for modeling dynamics.

Perception and Representation Learning

Techniques for obtaining object-level latent representations from raw observations include seg-

menting objects from visual inputs and encoding their features, directly mapping multi-object

scenes to structured object-centric encodings, or leveraging inverse rendering techniques to in-

fer physical object states.

The first approach explicitly segments objects before extracting features. Object-oriented

prediction and planning (O2P2) (93) assumes access to instance segmentation and encodes

each object separately, enforcing meaningful representations through a neural rendering engine.

Neuro-symbolic dynamic reasoning (NS-DR) (94) extends this to video, whereas region pro-

posal interaction networks (RPIN) (95) jointly detect and encode objects for dynamics learning.

Compositional NeRF (23) integrates segmentations across camera viewpoints for 3D consis-

tency.

Alternatively, object-centric representations can be learned from multi-object scenes with-

out explicit segmentation. Visual interaction networks (VIN) (96) extract object-wise latent

representations from image sequences and decode them into object states, including position

and velocity, but require ground-truth supervision. To alleviate this, the object-centric percep-

tion prediction, and planning (OP3) framework (97) performs unsupervised object discovery,

iteratively refining posterior estimates of object assignments based on interaction data.

A third approach leverages inverse rendering to infer object states from raw observations.

Tian et al. (98) use neural implicit object representations and optimization-based inference to

estimate 6D object poses, achieving robust performance under varying lighting conditions.
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Dynamics Learning

Object-centric dynamics models treat objects as discrete entities and model their interactions.

They can be implemented using generic neural networks or graph-based architectures that ex-

plicitly leverage relational structures.

To explicitly leverage relational structure, the neural physics engine (NPE) (99) introduces a

mechanism akin to message passing in GNNs. It iterates over object pairs, predicting their rela-

tive motion, and aggregating predictions. O2P2 (93) and OP3 (97) adopt similar object-centric

architectures. Although O2P2 incorporates environment actions such as object placement or

motion, OP3 further embeds action information as a latent vector to modulate both per-object

dynamics and interactions.

GNNs provide a more structured approach to modeling object interactions through iterative

message passing. The foundational interaction networks (IN) (100) represent objects as graph

nodes and encode relational attributes, such as restitution coefficients and spring constants, in

the edges. However, the model assumes access to ground-truth physical properties such as

shape and mass. When object states are unavailable, latent representations or robot actions can

act as node features (23, 94).

To sum up, object-centric representations are well-suited for tasks involving multi-object

interactions but less effective for modeling continuous materials such as fluids or highly de-

formable objects. Perception is typically achieved through instance segmentation, inverse ren-

dering, or object proposal techniques, though it remains challenging in general. Dynamics

are often modeled using graph-based architectures, enabling relational reasoning and modular-

ity. With object-level priors, these models support combinatorial generalization across varying

numbers and configurations of objects. They are generally computationally efficient for control,

but perception can become a bottleneck, potentially introducing latency.
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Figure 3: A spectrum of state representations with varying structure priors. State repre-
sentations in dynamics models range from unstructured (pixels, latent) to structured (particles,
keypoints, object-centric). Increasing structure introduces stronger priors and abstraction, en-
abling better generalization but requiring more complex state estimation. The “Swiss Roll”
illustration for latent states is inspired by Tenenbaum et al. (101).

Comparing and Selecting State Representations

Each state representation provides distinct trade-offs in modeling capacity, sample efficiency,

generalization, task alignment, interpretability, and computational cost (Figure 3).

Less structured representations, such as latent states and pixels, simplify state estimation but

introduce challenges in model bias and generalization. They often require larger datasets and

can hallucinate predictions in out-of-distribution scenarios. These inaccuracies can be prob-

lematic during downstream control, as optimization over unreliable model outputs may degrade

control performance.

Conversely, structured representations such as particles and object-centric models provide

strong inductive biases, like spatial equivariance, enhancing generalization and prediction accu-

racy. These models are often trainable within a few graphics processing unit (GPU) hours (17,

71) and more robust for policy and trajectory optimization. However, they pose challenges for

state estimation. Particle-based methods require temporally consistent 3D point tracks, which

remain difficult to obtain (90). Similarly, object-centric representations depend on accurate

20



perception modules, often making state estimation a bottleneck for scaling structured models.

The optimal choice of state representation depends on both the downstream task and hard-

ware constraints. For instance, object-centric representations excel in manipulation tasks in-

volving multiple rigid bodies (94,96,102) such as object rearrangement (23), stacking (93), and

sliding (14) due to their high level of abstraction, but are unsuited for fluids or granular materials

for which it is unclear how to define the notion of an object. Particle-based representations flex-

ibly capture the dynamics of deformable and non-rigid objects (71, 74), including dough (17),

cloth (103), and soft toys (20), though they often require multi-view RGB-D sensing for point

cloud perception. Latent and pixel-based models (44–46) can in principle handle arbitrary enti-

ties. However, they may produce physically inconsistent predictions without physics priors and

explicit 3D representations, particularly in contact-rich scenarios such as cutting or splitting

objects. Additionally, highly specular, transparent, or otherwise visually complex materials can

be challenging for RGB image reconstruction.

Interpretability is another key consideration. For some state representations, such as pixels,

particles, and keypoints, visualizing predicted trajectories is natural, making it simple to diag-

nose failure cases and refine models. In contrast, reconstruction-free latent-state models often

lack this transparency.

Finally, computational cost is crucial for real-world robotic deployment. Pixel-based models

require high-capacity architectures, whereas keypoint-based models often operate with smaller

networks. Graph-based methods, often used with particle representations, can scale linearly

with the number of graph edges or quadratically with the particle count, making inference costly.

Additionally, backpropagation through models during gradient-based action optimization can

add substantial computational overhead.

Table 1 summarizes the key trade-offs across state representations, including sensing modal-

ities, computational requirements, and target applications. Although existing methods excel
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at handling specific object types and sensor inputs, a unifying representation that generalizes

across diverse robotic tasks remains a challenging but crucial direction for future work.

22



State
Repre. References

Sensing Dynamics Object Type # Obj.

RGB Depth Multi-View Tactile 2D 3D Rigid Deformable Fluids Multiple

Latent
State

Agrawal et al. (15) ✓ ✓ ✓

Yan et al. (19) ✓ ✓ ✓

Wu et al. (7) ✓ ✓ ✓

Li et al. (58) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shen et al. (60) ✓ ✓ ✓ ✓ ✓

Pixel

Finn et al. (11) ✓ ✓ ✓ ✓ ✓

Suh et al. (41) ✓ ✓ ✓

Hoque et al. (47) ✓ ✓ ✓ ✓

Du et al. (46) ✓ ✓ ✓ ✓

Yang et al. (45) ✓ ✓ ✓ ✓

Particles

Gonzalez et al. (74) ✓ ✓ ✓

Li et al. (71) ✓ ✓ ✓ ✓ ✓

Ai et al. (20) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shi et al. (16) ✓ ✓ ✓ ✓ ✓

Wang et al. (22) ✓ ✓ ✓ ✓ ✓

Keypoints

Manuelli et al. (13) ✓ ✓ ✓ ✓

Wang et al. (91) ✓ ✓ ✓ ✓

Li et al. (87) ✓ ✓ ✓ ✓

Ma et al. (88) ✓ ✓ ✓

Rezazadeh et al. (89) ✓ ✓ ✓ ✓

Object-
centric

Watters et al. (96) ✓ ✓ ✓ ✓

Janner et al. (93) ✓ ✓ ✓ ✓

Xu et al. (14) ✓ ✓ ✓ ✓ ✓

Yi et al. (94) ✓ ✓ ✓ ✓

Driess et al. (23) ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Summary of key studies on dynamics learning. This table categorizes the literature
based on the type of state representation, sensors used, dynamics modeled, and object types
considered. The dimensions of the dynamics (2D, 3D) refer to the space in which object rota-
tions, translations, and deformations are modeled.
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CONNECTION TO ROBOTIC CONTROL

Learning-based dynamics models can be integrated with control modules to generate robot

motions for predefined task objectives. We first detail two ways to leverage learned dynamics

models, and then discuss representative tasks that benefit from this integration.

Control Methods

Techniques for performing control using learning-based dynamics models fall into two main

paradigms: motion planning and policy learning.

Motion Planning

Motion planning searches for a feasible path from an initial state to a goal state while satisfying

task constraints. Learned dynamics models enable planning in complex or unknown environ-

ments, where analytical models are unavailable, inaccurate, or hard to obtain. Motion planning

methods can be broadly categorized into path planning and trajectory optimization.

Path planning focuses on finding a sequence of collision-free states, without modeling sys-

tem dynamics. Sampling-based methods such as rapidly exploring random trees (RRTs) (104)

and probabilistic roadmaps (PRMs) (105) are widely used to search high-dimensional spaces

with complex constraints. Ann RRT incrementally expands a search tree through random sam-

pling. The resulting paths can then be refined into dynamically feasible trajectories through

trajectory optimization with learned dynamics models.

Trajectory optimization refines action sequences locally to improve task performance, di-

rectly leveraging learned dynamics models to simulate and evaluate outcomes. Sampling-

based methods like the cross-entropy method (CEM) (106) and model-predictive path integral

(MPPI) (107) explore multiple action candidates, while gradient-based methods adjust actions

using cost gradients enabled by model differentiability. Moreover, learned dynamics models
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can be integrated with online system identification to adapt to uncertain dynamics (14,20,108).

Policy Learning

In contrast to motion planning, policy learning seeks to directly obtain a map from observations

to actions. Learned dynamics models can provide simulated transitions as training data.

One approach is to generate training data in the form ⟨st, sg, at⟩, where the state st and

action at yield the next state sg. An inverse dynamics model can then learn to predict the action

needed to transition from st to sg, acting as a goal-conditioned policy. However, errors may

accumulate over extended rollouts, and multi-modal action distributions can be hard to fit, since

multiple actions could achieve the same transition.

Reinforcement learning (RL) optimizes policies through trial-and-error interactions to max-

imize cumulative rewards. Learned dynamics models facilitate this process by simulating tran-

sitions (109), allowing policies to be trained with a reduced or negligible number of real-

environment interactions. However, inaccuracies in the learned dynamics model can lead to

policy exploitation, particularly in state distributions not well-supported by training data. This

can be mitigated by fine-tuning the policy on real-world data in addition to simulated roll-

outs (110).

Representative Robotic Tasks

Learning-based dynamics models have been applied across tasks from object pushing to de-

formable and multi-object manipulation. This section highlights key applications and integra-

tions with motion planning and policy learning techniques.

Object Repositioning

Object repositioning is widely used to evaluate learned dynamics models in robotic control.

Latent representations (15,60) and pixels (21) have been used to represent single-object scenes,
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whereas keypoints can serve as a lower-dimensional representation for efficient dynamics learn-

ing given the limited degrees of freedom of rigid objects (13). On the other hand, multi-object

scenarios can be better modeled with object-centric representations (23). For control, motion

planning methods such as random search (14, 38, 60), MPPI (13, 107), and CEM (11, 106) can

optimize action sequences. Online system identification can help handle objects with unknown

physical properties (20). Alternatively, inverse dynamics models trained alongside forward

models can directly infer actions from current and target states (15).

Deformable Object Manipulation

Deformable object manipulation presents challenges due to high-dimensional shape variations

and complex contact dynamics (24,25). Particle-based representations can capture the arbitrary

geometries of deformable objects (16,17,20,71,74,108) and can be abstracted into keypoints for

objects with salient features such as cloth (88). Learned dynamics models have been integrated

with trajectory optimization for manipulating rope (19, 23), cloth (59), dough (17, 111), and

soft toys (20). These models also enable training goal-conditioned policies, as demonstrated in

long-horizon tasks such as making dumplings (16).

Multi-Object Manipulation

Manipulation involving multiple objects requires efficient planning to manage large state spaces.

Particle-based (20) and object-centric representations (23) perform well in multi-object model-

ing, whereas pixel-based methods struggle with modeling contact-rich interactions. To perform

control using learned dynamics models, RoboPack (20) applies MPPI with action priors for

object insertion. Latent-space RRT has been combined with model predictive control for long-

term planning and real-time corrections (23).
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Tool-Use Manipulation

Modeling tool-use dynamics may extend robotic capabilities beyond manipulating objects di-

rectly with an end-effector. Particles can provide a unified representation for objects, tools, and

robot end effectors (16, 20, 22), but require detailed 3D sensing; pixel-based methods offer a

lightweight perception alternative (39). Learned models have been used for shaping dough with

rollers and punches (16), non-prehensile box manipulation with compliant tools (20), and gran-

ular material manipulation (22). For extended tasks requiring tool selection and task execution,

action proposal models improve planning efficiency for sampling-based planning (39).

Figure 4 illustrates these tasks, and a summary of the discussed work is provided in Table 2.
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Figure 4: Robotic manipulation tasks enabled by learning-based dynamics models. (A)
object repositioning, (B) rope manipulation, (C) cloth manipulation, (D) plasticine manipula-
tion, (E) multi-object manipulation, and (F) tool-use manipulation. Examples span rigid and
deformable objects, multi-object settings, and tool-assisted operations.
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Task References Representation Dynamics
Model Class

Control

Object
Repositioning

Agarwal et al. (15) Latent CNN Greedy planner
Shen et al. (60) Latent MLP Random search
Tian et al. (21) Pixel CNN CEM
Manuelli et al. (13) Keypoint GNN MPPI
Driess et al. (23) Object-centric GNN RRT, random search

Rope
Manipulation

Yan et al. (19) Latent CNN Random search
Zhang et al. (108) Particle GNN MPPI
Ma et al. (88) Keypoint GNN Random search
Liu et al. (10) Keypoint MLP Mixed-Integer

Programming
Driess et al. (23) Object-centric GNN RRT, random search

Cloth
Manipulation

Yan et al. (19) Latent CNN Random search
Hoque et al. (47) Pixel CNN CMA-ES
Lin et al. (112) Particle GNN Random search
Ma et al. (88) Keypoint GNN Random search

Plasticine
Manipulation

Shi et al. (17) Particle GNN Gradient descent
Shi et al. (16) Particle GNN Learned policy
Bauer et al. (111) Latent Transformer CEM

Multi-Object
Manipulation

Xie et al. (39) Pixel CNN, LSTM CEM
Xue et al. (48) Pixel CNN Gradient descent
Ai et al. (20) Particle GNN MPPI
Rezazadeh et al. (89) Keypoint MLP GraphMPC
Driess et al. (23) Object-centric GNN RRT, random search

Tool-Use
Manipulation

Xie et al. (39) Pixel CNN, LSTM CEM
Shi et al. (16) Particle GNN Learned policy
Wang et al. (22) Particle GNN Gradient descent
Ai et al. (20) Particle GNN MPPI

Table 2: Summary of robotic tasks achieved by integrating learning-based dynamics mod-
els with planning. The table presents the designs, including representation, dynamics model
class, and control methods used for various robotic tasks. Each row represents a specific task
and highlights the combination of approaches used to tackle it.
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FUTURE DIRECTIONS

Learning-based dynamics models have advanced adaptive control in robotics model-based plan-

ning and policy learning. However, current systems remain far from human-level generaliza-

tion, adaptability, and robustness in unstructured environments. This section discusses key

limitations and outlines promising directions for future research.

Opportunities in Perception

Partially Observable Domains

Real-world environments are inherently partially observable due to visual occlusions and un-

known physical properties such as material rigidity and friction. Although passive history (7,

57), active perception (14), and multi-modal sensing (20) improve state estimation, challenges

remain in cluttered and unstructured scenes. Structured representations such as particles require

precise perception capabilities, whereas less structured models like pixels avoid this but often

struggle with accuracy and generalization, especially for contact dynamics (45). Future work

should explore new representations and robust state estimation methods to better handle partial

observability.

Multi-Modal Perception

Although most prior work relies on visual sensing, other modalities, including tactile (20) and

audio sensing (113), provide complementary information for perception and control. How-

ever, integrating multi-modal signals introduces several challenges. Differences in statistical

distributions across modalities complicate model training, while mismatched sensing frequen-

cies create deployment-time difficulties. Additionally, effectively fusing heterogeneous signals

into a unified representation remains an open problem. Addressing these challenges will enable

more robust dynamics reasoning and control performance across a wider range of tasks.
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Opportunities in Dynamics Learning

Robust Dynamics Models

Inaccuracies in learned dynamics models can be exploited by planning and reinforcement learn-

ing agents, leading to failures in long-horizon tasks. Ensuring robust predictions across the

entire state-action space is challenging due its combinatorial size. Additionally, certain state-

action subspaces can be difficult or unsafe to explore, limiting counterfactual reasoning capa-

bilities. Strategies to address this include using simulation data to cover challenging regions of

the state-action space, introducing physics priors to reduce data requirements (114), and using

probabilistic models to account for aleatoric uncertainty (7, 59).

Foundation Dynamics Models

Recent advances in foundation models (115) highlight the potential of large-scale training for

broadly capable vision and language models. In contrast, most learned dynamics models remain

narrow-domain due to the lack of large-scale real-world datasets with action labels (19, 103).

Scaling up dynamics models may require inferring actions from unlabeled data like internet

videos. Early efforts, such as learning latent actions (51, 116), suggest promising directions for

this goal.

Dynamics Priors from Foundation Models

Estimating physical properties such as mass, friction, and deformability is crucial for accurate

dynamics modeling, yet remains challenging. Prior work has attempted to infer these prop-

erties from observations, using visual cues (98), tactile sensing (20), or multi-view depth im-

ages (14). Recent foundation models demonstrate commonsense reasoning about material prop-

erties (117, 118), offering a potential source of priors for estimating system parameters (108).

By integrating these priors with learned dynamics models, future work could reduce reliance on
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real-world data and online identification.

Emerging Representations from Graphics Research

Scene representations from computer graphics offer new possibilities for dynamics learning.

NeRF-based representations address limitations of direct pixel representations by capturing

multi-view consistency and 3D structure (23, 58). Particle-based models tend to struggle with

smooth continuous deformations, but recent advances in 3D Gaussian Splatting (3DGS) (119)

may help address this by modeling particles as Gaussian functions, producing smoother and

more flexible surfaces. Although 3DGS has been applied to dynamic scene reconstruction (120,

121), its integration with action-conditioned dynamics models remains underexplored. Early ef-

forts include tracking objects with 3DGS in particle-based models (122), but deeper integration

is a promising future direction.

Large-Scale Scene Representations

Most learning-based dynamics models focus on small-scale tabletop environments and local

interactions (10, 88, 111), limiting their applicability to real-world tasks that require reason-

ing over large, dynamic spaces. Traditional approaches, such as simultaneous localization and

mapping (SLAM) (123), provide global geometric maps but lack dynamic information. Fu-

ture directions include developing scene representations at varying levels of abstractions that

capture both global structure and local interactions, training dynamics models from local in-

teractions while maintaining scene-level coherence, and designing efficient update mechanisms

that modify only affected scene regions (124).
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Opportunities in Robotic Control

Hierarchical Dynamics Modeling and Planning

Highly detailed dynamics models are not always ideal for planning, as they induce large search

spaces and high computational cost. Instead, modeling environments at multiple levels of ab-

straction can enable more efficient hierarchical planning (125) for long-horizon tasks. Low-

level models can capture fine-grained physical interactions for motor control, whereas high-

level models may represent skill-level transitions or abstract state dynamics to support task

planning (126). The most effective models are often those that are sufficient for the decision at

hand (effective) while remaining minimal in complexity (efficient). Future work may explore

constructing such dynamics models across different abstraction levels: spatially, from particle-

based to object-centric representations, and temporally, from short-horizon physical transitions

to extended skill executions. An exciting direction is to investigate how to learn unified hier-

archical dynamics models or to compose and interface separate models at different abstraction

levels, and integrate them with hierarchical planning frameworks to support decision-making

across large spatial and temporal scales.

Learning to Plan

Existing work typically obtains locally accurate dynamics models and restricts exploration to

well-supported regions through engineered action spaces or carefully designed planning costs.

Machine learning offers a way to automate this process. One line of work focuses on improving

planning efficiency by learning heuristics to guide search (127) or optimizing surrogate objec-

tives such as action space selection (128). Another approach is to alleviate the need for globally

accurate dynamics models by learning action generative models that constrain the sampling

space during planning (129). Despite these initial explorations, learning to identify reliable re-

gions of learned dynamics models and to plan efficiently and robustly in the presence of model
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imperfections remains an open challenge.

Performance Guarantees

Prediction errors in learned dynamics models can accumulate over time and degrade planning

performance. Uncertainty quantification methods, such as Bayesian neural networks (130) and

variational inference (131), help mitigate this by additionally providing confidence estimates.

Although uncertainty estimates have been used in model-based RL (110) and trajectory opti-

mization (132), their use in robust planning remains underexplored. Coupling these techniques

with theoretical guarantees from planners is a promising path towards reliable real-world de-

ployment.

CONCLUSIONS

Learning-based dynamics models have substantially advanced robotic capabilities, from simple

tasks to more complex scenarios involving long-horizon planning and deformable objects. The

choice of state representation critically influences a dynamics model’s accuracy, data efficiency,

and state estimation requirements. This review has presented a robotics-centric examination of

dynamics models, emphasizing their integration with perception and control. Despite recent

advances, key challenges remain in developing robust, generalizable, and scalable dynamics

models, which could serve as foundational tools for robotic manipulation. Fundamental ques-

tions persist: What representations best capture diverse scenes? How can inductive biases bal-

ance expressiveness and generalization? Addressing these questions is essential for advancing

adaptive, interpretable, and robust robotic systems.
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